3.4.28 \(\int \frac {x^2}{(8 c-d x^3) (c+d x^3)^{3/2}} \, dx\) [328]

Optimal. Leaf size=55 \[ -\frac {2}{27 c d \sqrt {c+d x^3}}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 c^{3/2} d} \]

[Out]

2/81*arctanh(1/3*(d*x^3+c)^(1/2)/c^(1/2))/c^(3/2)/d-2/27/c/d/(d*x^3+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {455, 53, 65, 212} \begin {gather*} \frac {2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 c^{3/2} d}-\frac {2}{27 c d \sqrt {c+d x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((8*c - d*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

-2/(27*c*d*Sqrt[c + d*x^3]) + (2*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(81*c^(3/2)*d)

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (8 c-d x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {1}{(8 c-d x) (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=-\frac {2}{27 c d \sqrt {c+d x^3}}+\frac {\text {Subst}\left (\int \frac {1}{(8 c-d x) \sqrt {c+d x}} \, dx,x,x^3\right )}{27 c}\\ &=-\frac {2}{27 c d \sqrt {c+d x^3}}+\frac {2 \text {Subst}\left (\int \frac {1}{9 c-x^2} \, dx,x,\sqrt {c+d x^3}\right )}{27 c d}\\ &=-\frac {2}{27 c d \sqrt {c+d x^3}}+\frac {2 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )}{81 c^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 52, normalized size = 0.95 \begin {gather*} \frac {2 \left (-\frac {3 \sqrt {c}}{\sqrt {c+d x^3}}+\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{3 \sqrt {c}}\right )\right )}{81 c^{3/2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((8*c - d*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(2*((-3*Sqrt[c])/Sqrt[c + d*x^3] + ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])]))/(81*c^(3/2)*d)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.31, size = 435, normalized size = 7.91

method result size
default \(-\frac {2}{27 d c \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}}-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d}{18 d c}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \sqrt {d \,x^{3}+c}}\right )}{243 d^{3} c^{2}}\) \(435\)
elliptic \(-\frac {2}{27 d c \sqrt {\left (x^{3}+\frac {c}{d}\right ) d}}-\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (d \,\textit {\_Z}^{3}-8 c \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, -\frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d}{18 d c}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \sqrt {d \,x^{3}+c}}\right )}{243 d^{3} c^{2}}\) \(435\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/27/d/c/((x^3+c/d)*d)^(1/2)-1/243*I/d^3/c^2*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2
)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)
^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(
1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^
2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)
^(1/3))^(1/2),-1/18/d*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(
-c*d^2)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3
)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 58, normalized size = 1.05 \begin {gather*} -\frac {\frac {\log \left (\frac {\sqrt {d x^{3} + c} - 3 \, \sqrt {c}}{\sqrt {d x^{3} + c} + 3 \, \sqrt {c}}\right )}{c^{\frac {3}{2}}} + \frac {6}{\sqrt {d x^{3} + c} c}}{81 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

-1/81*(log((sqrt(d*x^3 + c) - 3*sqrt(c))/(sqrt(d*x^3 + c) + 3*sqrt(c)))/c^(3/2) + 6/(sqrt(d*x^3 + c)*c))/d

________________________________________________________________________________________

Fricas [A]
time = 2.73, size = 147, normalized size = 2.67 \begin {gather*} \left [\frac {{\left (d x^{3} + c\right )} \sqrt {c} \log \left (\frac {d x^{3} + 6 \, \sqrt {d x^{3} + c} \sqrt {c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 6 \, \sqrt {d x^{3} + c} c}{81 \, {\left (c^{2} d^{2} x^{3} + c^{3} d\right )}}, -\frac {2 \, {\left ({\left (d x^{3} + c\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{3 \, c}\right ) + 3 \, \sqrt {d x^{3} + c} c\right )}}{81 \, {\left (c^{2} d^{2} x^{3} + c^{3} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[1/81*((d*x^3 + c)*sqrt(c)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) - 6*sqrt(d*x^3 + c)*c
)/(c^2*d^2*x^3 + c^3*d), -2/81*((d*x^3 + c)*sqrt(-c)*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) + 3*sqrt(d*x^3 + c
)*c)/(c^2*d^2*x^3 + c^3*d)]

________________________________________________________________________________________

Sympy [A]
time = 8.37, size = 51, normalized size = 0.93 \begin {gather*} - \frac {2}{27 c d \sqrt {c + d x^{3}}} - \frac {2 \operatorname {atan}{\left (\frac {\sqrt {c + d x^{3}}}{3 \sqrt {- c}} \right )}}{81 c d \sqrt {- c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-d*x**3+8*c)/(d*x**3+c)**(3/2),x)

[Out]

-2/(27*c*d*sqrt(c + d*x**3)) - 2*atan(sqrt(c + d*x**3)/(3*sqrt(-c)))/(81*c*d*sqrt(-c))

________________________________________________________________________________________

Giac [A]
time = 1.50, size = 48, normalized size = 0.87 \begin {gather*} -\frac {2 \, \arctan \left (\frac {\sqrt {d x^{3} + c}}{3 \, \sqrt {-c}}\right )}{81 \, \sqrt {-c} c d} - \frac {2}{27 \, \sqrt {d x^{3} + c} c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-d*x^3+8*c)/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

-2/81*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c*d) - 2/27/(sqrt(d*x^3 + c)*c*d)

________________________________________________________________________________________

Mupad [B]
time = 3.63, size = 63, normalized size = 1.15 \begin {gather*} \frac {\ln \left (\frac {10\,c+d\,x^3+6\,\sqrt {c}\,\sqrt {d\,x^3+c}}{8\,c-d\,x^3}\right )}{81\,c^{3/2}\,d}-\frac {2}{27\,c\,d\,\sqrt {d\,x^3+c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((c + d*x^3)^(3/2)*(8*c - d*x^3)),x)

[Out]

log((10*c + d*x^3 + 6*c^(1/2)*(c + d*x^3)^(1/2))/(8*c - d*x^3))/(81*c^(3/2)*d) - 2/(27*c*d*(c + d*x^3)^(1/2))

________________________________________________________________________________________